1. 信息系统及安全对抗实验中心首页
  2. 学术报告

高斯混合模型及求解算法

      高斯混合模型(Gaussian mixture model,GMM)用于对样本的概率密度分布进行估计,而估计采用的模型(训练模型)是几个高斯模型的加权和。每个高斯模型就代表了一个类。对样本中的数据分别在几个高斯模型上投影,就会分别得到各个类上的概率,然后我们可以选取概率最大的类作为判决结果,以此达到对样本分类的目的。本次报告将从GMM的基本模型出发,从理论推导和抽象理解的角度分析GMM的求解算法,包括最大似然估计、EM算法等。

附件-高斯混合模型及求解算法.pdf

原创文章,作者:BFS,如若转载,请注明出处:https://www.isclab.org.cn/2019/02/18/%e5%ad%a6%e6%9c%af%e6%8a%a5%e5%91%8a-%e9%ab%98%e6%96%af%e6%b7%b7%e5%90%88%e6%a8%a1%e5%9e%8b%e5%8f%8a%e6%b1%82%e8%a7%a3%e7%ae%97%e6%b3%95/