1. 信息系统及安全对抗实验中心首页
  2. 学术报告

基于度量学习的小样本学习方法介绍

Few-shot learning (FSL)的含义是得到从少量样本中学习和概括的能力,它希望机器学习模型在学习了一定类别的大量数据后,对于新的类别,只需要少量的样本就能快速学习。小样本学习概念最早在计算机视觉领域兴起,近年来受到广泛关注。本次学术报告讲解一些小样本的基本概念和目前比较主流的基于度量学习的小样本学习方法。

基于度量学习的小样本学习方法介绍-林朝坤

原创文章,作者:BFS,如若转载,请注明出处:https://www.isclab.org.cn/2020/11/02/%e5%9f%ba%e4%ba%8e%e5%ba%a6%e9%87%8f%e5%ad%a6%e4%b9%a0%e7%9a%84%e5%b0%8f%e6%a0%b7%e6%9c%ac%e5%ad%a6%e4%b9%a0%e6%96%b9%e6%b3%95%e4%bb%8b%e7%bb%8d/