网络表示是衔接网络原始数据和网络应用任务的桥梁。网络表示学习算法负责从网络数据中学习得到网络中每个节点的向量表示, 之后这些节点表示就可以作为节点的特征应用于后续的网络应用任务,如节点分类、链接预测等。如何使用神经网络来进行网络表示学习?deepwalk进行了一次成功的尝试。本次报告介绍了deepwalk的设计思路和算法原理,并尝试从作者的角度理解deepwalk的创新思想。
原创文章,作者:BFS,如若转载,请注明出处:https://www.isclab.org.cn/2019/03/18/%e5%ad%a6%e6%9c%af%e6%8a%a5%e5%91%8a-%e7%bd%91%e7%bb%9c%e8%a1%a8%e7%a4%ba%e5%ad%a6%e4%b9%a0-deepwalk/