bfs
-
多标签学习
每天都有大量的数据生成,这导致人们越来越需要新的努力来应对大数据给多标签学习带来的巨大挑战。例如,极端多标签分类是一个活跃且快速发展的研究领域,它处理的分类任务具有极其大量的类别或标签;利用具有有限监督的海量数据来建立多标签分类模型对于实际应用等变得有价值。因此,本次学术报告致力于介绍多标签学习的前沿研究方向,以思考该领域未来的发展趋势和研究热点。
-
机器学习模型后门攻击检测
本次学术报告简要介绍了人工智能系统面临的各种安全威胁,通过将对抗样本与后门攻击进行多方面比较,从而引入了机器学习模型后门攻击的原理和检测方法,以及后门攻击技术的应用领域。
-
深度神经网络后门攻击
人工智能模型安全是人工智能应用落地需要考量的重要问题,后门攻击威胁是人工智能模型安全的重要议题。本次学术报告以深度神经网络为后门攻击的对象,从深度神经网络训练的内部机理出发,通过了解深度神经网络中已知后门攻击方法的流程,体会后门攻击在深度神经网络中对网络结构操作的原理,以此思考神经网络神经元在决策中的解释说明作用。
-
特定安全攻防场景中的对抗样本生成方法
最新的特定安全攻防场景可以细化为两个研究方向:匿名通信网络的网站指纹防御和僵尸网络的域名生成,以此来介绍对抗样本在防御任务和攻击任务中的应用。网站指纹攻击可以从网站中提取流量模式,分析用户访问的网站以此来破坏隐私增强技术的保护。僵尸网络为了保证平稳运行需要利用域名生成算法隐藏C&C服务器的域名。本报告可以给大家对抗样本生成的研究提供两个最新视角。
-
多视角深度学习
多视角即从各种不同的角度观察同一事物 ,在深度学习中即引入一个函数去模型化特定的视角,并且利用相同输入的冗余视角去联合优化所有函数,达到更好的模型效果。多视角学习可应用于大多数数据分析问题,并可以处理不同领域或需要从各种特征中获得异构数据的问题。本次报告会让大家了解多视角学习的基本概念和常见应用,并启发大家利用多视角的思维去解决专业问题。
-
图神经网络可解释方法
图神经网络模型的可解释性对于建立用户与决策模型之间的信任关系至关重要,为了安全、可信地部署图神经网络模型,需要提高图神经网络模型的可解释性和透明性。本次报告带大家了解图神经网络的可解释方法的分类和常用的解释方法(GNNExplainer和XGNN)
-
未来可期-2021届毕业生风采
我们常见踌躇满志、梦想泛滥,亦常见流于想法、沉于安逸、堕于苟且。毕业只是另一个崭新的开始,未来的路虽神秘但又充满挑战,愿你们寻梦有志,逐梦有行,圆梦有恒,脚踏实地!愿你们不忘初心,继续携梦前行!愿你们能以开放精神、开阔格局、淡定平和、专注坚韧,不断领会未来人生的深远意义,期待大家在属于你们的天高海阔中,成就精彩未来!
-
基于元学习的知识图谱补全技术
知识图谱补全是知识图谱技术研究热点。以前的知识图谱补全方法需要大量的训练实例,而知识图谱中普便存在“长尾数据”现象,大多关系无法提供大量样本数据。本次学术报告通过将元学习方法思想引入知识图谱补全任务,实现了小样本学习;并分别对基于度量和基于优化的两种元学习方法进行介绍;最后,对元学习知识图谱补全技术和未来发展方向进行总结和展望。