bfs
-
图神经网络可解释方法
图神经网络模型的可解释性对于建立用户与决策模型之间的信任关系至关重要,为了安全、可信地部署图神经网络模型,需要提高图神经网络模型的可解释性和透明性。本次报告带大家了解图神经网络的可解释方法的分类和常用的解释方法(GNNExplainer和XGNN)
-
未来可期-2021届毕业生风采
我们常见踌躇满志、梦想泛滥,亦常见流于想法、沉于安逸、堕于苟且。毕业只是另一个崭新的开始,未来的路虽神秘但又充满挑战,愿你们寻梦有志,逐梦有行,圆梦有恒,脚踏实地!愿你们不忘初心,继续携梦前行!愿你们能以开放精神、开阔格局、淡定平和、专注坚韧,不断领会未来人生的深远意义,期待大家在属于你们的天高海阔中,成就精彩未来!
-
基于元学习的知识图谱补全技术
知识图谱补全是知识图谱技术研究热点。以前的知识图谱补全方法需要大量的训练实例,而知识图谱中普便存在“长尾数据”现象,大多关系无法提供大量样本数据。本次学术报告通过将元学习方法思想引入知识图谱补全任务,实现了小样本学习;并分别对基于度量和基于优化的两种元学习方法进行介绍;最后,对元学习知识图谱补全技术和未来发展方向进行总结和展望。
-
成员推理攻击和防御
机器学习已经演化为了一种服务模式,即机器学习即服务模式。互联网公司或提供模型训练接口,或提供模型预测接口给用户以提供相应的服务。但是,在提供服务的整个过程中,机器学习模型不可避免的需要面对安全以及隐私问题。本次学术报告从信息安全CIA模型出发对面临的问题进行分类阐述,并对模型隐私问题中的成员推理攻击的基本概念和防御方法展开讨论,并结合两篇论文介绍了攻击的基本…
-
动态网络嵌入方法研究
传统的网络表示一般使用高维的稀疏向量,但是局限在于难以度量节点间的相似性,而一般的静态网络嵌入方法,忽略网络的动态演化过程,因此提出了基于动态网络的嵌入方法学习。本次将基于深度自编码器的两个动态网络嵌入方法——DynGEM、dyngraph2vec进行讲解。
-
小样本命名实体识别
NER一直是NLP领域中的研究热点。近年来,深度学习方法在特征抽取深度和模型精度上表现优异,已经超过了传统方法,但无论是传统机器学习还是深度学习方法都依赖大量标注数据来训练模型。然而,在很多场景下,收集大量的有标签的数据是非常昂贵、困难、甚至不可能。因此在特定领域、小语种等缺乏标注资源的情况下,NER 任务往往得不到有效解决。为了解决然少量标注数据的命名实体…
-
Web前端框架对比
前端开发是创建WEB页面或APP等前端界面呈现给用户的过程,通过HTML,CSS及JavaScript以及衍生出来的各种技术、框架、解决方案,来实现互联网产品的用户界面交互。本次学术报告主要介绍现代前端MVVM、数据绑定等技术与概念并对比目前三大主流前端框架Vue、Angular、React。
-
时空数据挖掘
物联网技术和人工智能的快速发展,含时间、空间特性的数据指数增长。如何进行多源异构时空数据本身特性出发,和机器学习深度学习技术深入融合,实现数据实现知识发现和信息挖掘,服务于城市发展与生活应用,是一个巨大挑战。