bfs
-
基于深度学习的恶意流量检测方法
近年来,基于机器学习的算法在恶意流量检测领域中越来越流行,但此类算法通常使用浅层模型,在训练之前需要一组专家手工制作的特征来预处理数据。此类方法的主要问题是,在不同类型的场景下,手工制作的特征可能无法表现出较好的分类结果。深度学习模型可以在一定程度上解决这类问题,它从输入的原始或未处理数据中学习特征表示,不需要对数据进行复杂的特征构建也能够得到很好的分类效果…
-
基于网络一致性的对抗样本检测
人工智能系统面临着多种安全威胁,其中对抗样本攻击被广泛应用于诸如计算机视觉、自然语言处理、音频处理以及恶意软件检测等多个领域。本文介绍了常见的对抗样本检测方法和原理。特别的,简单分析了两种基于网络一致性的对抗样本检测方法,并对对抗样本检测技术在网络安全领域的未来发展做了展望。随着攻击手法越来越多样化,攻击算法越来越高效,更加稳健、通用的防御方法是未来的研究热…
-
深度神经网络中的后门攻击
深度神经网络在图像识别、语音处理以及机器翻译等领域具有良好的预测性能,但是由于深度神经网络对决策结果可解释性的缺乏以及解决训练开销而寻求的外包训练的安全难以有效保证,都导致深度神经网络存在脆弱性,攻击者可以利用脆弱性对模型做出卓有成效的攻击。学术报告从深度神经网络的一般训练过程出发,讲述了深度神经网络中常见攻击存在的环节以及攻击的效果,详细阐述了深度神经网络…
-
本体及本体互操作介绍
本体是共享概念模型的明确的形式化规范说明,它提供一个领域知识的表达框架,目标是捕获领域知识,提供对该领域知识的共同理解,实现领域知识的共享。本体互操作则是建立本体之间的映射,实现本体的扩展效果,达到更大范围的知识共享和重用。本次学术报告主要从语义网的相关技术着手,以实例介绍了领域本体的构建方法及本体互操作的方法。
-
法律文本可解释性研究
法律文本可解释性研究是将可解释性研究方法应用到法律文本领域,旨在构建智慧法庭,辅助法官判案,实现法律检索和类案匹配。本次学术报告从案件罪名预测和相似案例匹配两个应用角度进行讲解,对可解释性的概念进行全面说明。
-
时序网络嵌入方法介绍
网络嵌入(Network Embedding)是针对网络中节点进行特征学习的一项新兴的研究任务,它旨在将网络中的节点表示成低维、实值、稠密的向量形式,使得得到的向量形式可以在向量空间中具有表示以及推理的能力,从而运用到社交网络中常见的应用中,如节点分类、链接预测等。本次学术报告主要讲述基于霍克斯工程的时序网络嵌入的算法模型。
-
文本风格迁移
风格迁移是将多种类型风格转换成另一风格,是自然语言处理领域的一个重要问题,表征着文本生成和风格控制技术的发展情况,在大数据时代下的隐私保护等方面起着重要作用。本文主要介绍了文本风格迁移存在的问题及解决方法,并介绍了两篇经典的风格迁移方法。
-
基于度量学习的小样本学习方法介绍
Few-shot learning (FSL)的含义是得到从少量样本中学习和概括的能力,它希望机器学习模型在学习了一定类别的大量数据后,对于新的类别,只需要少量的样本就能快速学习。小样本学习概念最早在计算机视觉领域兴起,近年来受到广泛关注。本次学术报告讲解一些小样本的基本概念和目前比较主流的基于度量学习的小样本学习方法。