学术报告
-
无监督数据增强研究
面对渴求大量数据的深度学习,数据扩增方法可以缓和一部分需求,但数据扩增方法往往只应用在有监督学习设定中,带来的提升也较为有限。GoogleAI最新提出了一种在半监督学习设定中,把数据扩增方法运用在未标注数据上的新方法。他们的方法,无监督数据扩增 UDA,会鼓励模型面对未标注数据和扩增过的…
-
基于知识库的命名实体识别
基于统计的命名实体识别方法根据特征的获取方式,有神经网络和特征工程两个研究方向,实践表明来自知识库的词典特征并不能被神经网络完全取代。本次报告首先解释了命名实体识别、知识库等概念;接下来,按照历史发展的顺序描述现存的知识库利用方法,其中重点介绍基于神经网络的知识库利用方法;然后,展示实验…
-
多标签学习综述
多标签学习的研究对于多义性对象的学习建模具有十分重要的意义,现已逐渐成为机器学习界一个新的研究热点。本次报告将对多标签学习的研究现状做一个简介,首先给出多标签学习的定义与面临的主要问题,并介绍多标签性能评价指标,然后介绍几种具有代表性的多标签学习算法。 附件-多标签学习综述.pdf
-
在线集成学习
本次学术报告介绍了集成学习和在线学习基本思想,对离线bagging(装袋)和离线boosting(提升)的基本原理进行了简单回顾,并详细介绍了在线bagging和在线boosting的算法原理。 附件-在线集成学习.pdf
-
机器学习中的非凸优化
机器学习模型可化简为求解一个目标函数/损失函数的最优化问题,根据优化目标及约束的不同,可划分为凸优化(Convex optimization)与非凸优化(Non-convex optimization)两类。本次报告首先回顾了优化问题及凸优化的相关理论知识,进而面向机器学习中因目标函数非…
-
Glibc内存管理2
内存管理是指软件运行时对计算机内存资源的分配和使用的技术。其最主要的目的是如何高效,快速的分配,并且在适当的时候释放和回收内存资源。本次报告分三个方面来讲:核心结构体,关键函数,初始化源码分析。 附件-Glibc内存管理2.pdf
-
Glibc内存管理1
内存管理是指软件运行时对计算机内存资源的分配和使用的技术。其最主要的目的是如何高效,快速的分配,并且在适当的时候释放和回收内存资源。本次报告分三个方面来讲:基础知识,Glibc的该书,源码分析。 附件-Glibc内存管理1.pdf
-
污点分析及其关键技术
目前针对二进制漏洞挖掘主要有三个研究方向:符号执行、污点分析和模糊测试。本次报告首先介绍了污点分析的三个重要概念,其次结合具体代码讲解了污点分析的详细过程,以及在隐式流传播中可能存在的欠污染和过污染问题。最后结合经典论文中提出的libdft污点分析框架,结合实际讲解了libdft框架的结…