学术报告
-
DNN中的理论可解释性
自DNN诞生起,人们就开始尝试对其解释。若要对DNN进行定量、严谨的解释,数学层面的理论构建是必要的。本次报告介绍了基于博弈论Shapley Value构建的DNN可解释性理论体系,跟随理论构建过程,讲解了概念定义的初衷、条件和性质,进而分析了证明和计算过程,并介绍了数学层面的可解释性在语义层面的应用。
-
大语言模型调研
针对大语言模型展开调研,介绍大语言模型发展背景和研究现状,通过讲解LLaMA2模型的预训练和微调步骤,全面讲解大语言模型的训练过程,随后对越狱攻击大语言模型的方法进行研究,通过讲解MASTERKEY算法,介绍了自动化生成越狱提示的方法,最后对大语言模型的未来发展分点解析。
-
平面多标签文本分类方法
多标签文本分类是对文本信息进行组织、利用和检索的有效手段,能够提高数据处理效率,具有重要的实际价值。平面多标签文本分类是多标签分类下的子任务,标记每个给定文本与最相关的多个标签。本次学术报告主要介绍了平米按多标签文本分类的背景意义、知识基础、算法原理和未来发展方向。
-
强化学生个性的知识追踪
知识追踪是缓解基础教育普及需求和严重不足的教师数量之间矛盾的一个关键途径。目前,提高知识追踪的个性化水平是研究重点之一。本次报告介绍了两类强化学生个性的知识追踪技术,包括额外个性化特征和动态模型参数。
-
多视图聚类技术
多视图聚类技术旨在利用不同视图之间信息的互补性和一致性增强模型的鲁棒性,提高聚类准确率。本次报告首先讲述多视图聚类的基本概念,然后结合两篇算法对完全多视图聚类和不完全多视图聚类方法进行简介,最后介绍多视图聚类的发展方向。
-
微架构推测执行漏洞检测
CPU的性能提升是几十年来相关研究的重要主题,但随之而来的安全问题也愈发引起重视。其中推测执行漏洞因其种类多、隐蔽性高等问题使相关对抗方法的研究面临众多挑战,因此,如何提升CPU对抗推测执行攻击的能力,对现代计算机安全发展具有重要的理论意义和应用价值。本次学术报告以CPU中的推测执行漏洞为主题,结合两篇顶会论文,介绍如何在现代CPU中检测已知漏洞和挖掘未知推…
-
源代码漏洞分类
漏洞分类是漏洞分析中的重要一环,为了及时评估并缓解漏洞问题,快速、准确的漏洞分类方法必不可少,但目前漏洞分类领域面临着由于不同类型的漏洞数量高度不平衡导致的漏洞类型预测精度不佳的问题。本次报告介绍了一种源代码漏洞分类技术,分析阐述了漏洞数据的划分方式和源代码特征的提取方法等内容。
-
深度神经网络鲁棒性评估方法
深度学习模型具有高度非线性和特征空间抽象等特性,内部决策逻辑难以解释,导致其实际应用严重受限。本次报告从深度神经网络可解释性的基本概念出发,对常见的解释方法进行简介,并介绍了一篇将后门攻击应用于攻击解释方法的论文。